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Recall

In this course we will restrict attention to the minimal Markov chains.
These will be what we consider to be continuous time Markov chains. The
following gives two equivalent ways of looking a these Markov chains.

Theorem

Given a general Q-matrix Q and the associated minimal semigroup
P(t):>o the following are equivalent for a process (X;)i>o that is cadlag
on |

a) Conditional upon Xy = i, the jump chain of X, (Y,)n>0 is a discrete
time (6;, M) Markov chain (where 11 is derived from Q in the usual way)
and conditional upon (Y,)n>, the holding times (S,)n>1 are independent
Exp(qy,_,) random variables.

b) Given integer n > 0 and times 0 < to < t; < --- < t,1 and

fo, i+ inp1 €1,

P(Xe,s = ing1| Xy = io, Xey = i1+ Xy = fn) = Piinyi (thp1 — tn)

In +hic mnart snra t1ea A vathar +ham RY +A Aarnalvioa +ha ~lhAliae



Basic Theory for Cts Time Chains.
0000000000000

Class Structure

Definition

Given Q-matrix @, we say i leads to j if
P;(3t>0: X, =j) >0

We write i — j if this is the case.
Definition We say i and j communicate if i — jand j — |

Theorem
The following are equivalent to i — j for i and j distinct
(i) i — j for the jump chain (Y,)n>0
(i) 3n>0andi=ig,ir---ip=j sothat V1< j<n,q; ,; >0
(iii) Vt > 0,P;(t) >0
(iv) for some t >0, P;(t) >0
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Proof

(i) is obviously equivalent to i — j given the jump chain representation.
Furthermore ( ) is equivalent to the existence of integer n > 0 and distinct
I =g, iy I, = sothat V1 < j < n, T i > 0. But this is equivalent to
the exisitence of n and distinct i = iy, iy - - - I, = j so that

V1 <j<n,q,i—j>0, thatis (ii). If (i ) hoIds with n and

I =1y, iy i, =J, then for any t > 0

Pi(Xe =j) > Pi(Y; =iVj<n S <t/nVj<nS,>t)>0.

It is immediate that (iii) implies (iv). But, again from the jump chain
representation, it is clear that (iv) implies (i)
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Given our definition for / and j communicating, we can easily see that this
relation partitions / into communicating classes, as in Chapter 1. We say
the chain is irreducible if there is a single communicating class (and it is
easily seen that this is the same as the jump chain being irreducible). We
similarly speak of closed classes and absorbing sites (i is absorbing if and
only if g; = 0).
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Hitting probabilities
Some questions for continuous time Markov chains can be rewritten as
questions fore the discrete time jump chain. An important example is
calculating P;(Da < o0) for i€ I, AC | and Da = inf{t > 0: X, € A}.
The event Dy < oo is exactly the event that 3n > 0: Y, € A for Y the
discrete time jump chain for X.

So if we write h? for P;(Da < o0) which equals PY (T4 < 00), we have

Theorem

The function h* is the smallest positive function satisfying
e hr=1 forieA;
° E qih? =0 fori ¢ A;

Proof: We know that h?' is the smallest positive function satisfying h* = 1
for i € Aand 3 mhit — hft =0 for i ¢ A. We note that for j not in A if
it is absorbing then hA =0 and Z qUhA = 0; if it is not then

qi(>2; mih?t — hf') = 0 which is precisely 3. g;;h/' = 0. The reverse holds
in the same way.
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Just as in chapter one, we have
Corollary

For A and B disjoint subsets of I. Let h,-A’B = P;(Da < Dg) The function
hAB is the smallest positive function satisfying
o W =1foricA;
o " =0 foric B,

© Y qih*® =0 fori¢ AUB;
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Again, as in Chapter 1 we can consider function

ki = &/(Da)
Theorem
Suppose that q; > 0 for each i € | The function k* is the smallest
positive function satisfying

° k,-A:0 fori € A;

° zj q,jij =—1fori¢ A

Remark: We need the hypothesis that g; > 0 as otherwise if i ¢ A, the
second equation cannot be true.
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Proof

Unlike the previous result which was just a reqgriting of the corresponding
result for the jump chain, this statement requires a reworking of the proof
of the analagous result for discrte time processes. Again we use the jump
chain. We first show k* satisfies the claimed equations. Obviously k** =0
on A so we suppose that i ¢ A. In this case we condition on the first jump
time S; for the chain starting at /:

kIA E( (DA|51) (51+Z7TUkA) =
—+Z7T,J = 1+ZquA

R J#i

So multiplying both sides by q; = —q;; we get —q;k = 1+ Zﬁéi q,-J-kJ-A
which is the desired equation for i not in A.
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Proof continued

It remains to prove minimality. Again we use the same argument as for
Chapter 1: we regenerate whenever possible. We need only consider i not
in A. Then for k” another positive solution to the above equations

~ 1 ~ 1 ~
= LS = L S

j#i bjgA
1 1 .
=+ > w4 ) mik)
qi J#igA 9 I¢A
We note that 3. ; 7r,-j(qu is E;(S2/p,~s,). Continuing with our expansion
we have for each n, kA

1 - -
~ + Ei(S2lp,>s,) + - - Ei(Snlp,>s,_,) + positive term.
to finish we simply observe that as n tends to infinity
% + Ei(S2lp,>s,) + - - Ei(Salp,>s, ,) converges to k.
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Recurrance and Transience

Definitions:
Given Q a site i € [ is recurrent if

P;({t: X; = i} is unbounded) = 1
and is transient if
P;({t : X; = i} is unbounded) = 0.

It is immediately clear that 7 is recurrent for Q if and only if / is recurrent
for the jump chain with transition matrix 1. In fact we have

Theorem
(i) i is recurrent for (X;)t>o if it is recurrent for (Yy,)n>o0,
ii) i is transient for (X;)t>o if it is transient for (Y,)n>o0,
(iii) Each site is either transient or recurrent
(iv) Transience or Recurrence are class properties.

The theorem is immediate from our Jump chain representation. We will,
as before, speak of transient or recurrent chains if all sites / are so. In
particular we will speak of transient/recurrent chains if .Q is-irreducible.
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Expected time at /
Definition
Given Q Markov chain (X;)¢>o , we write T; for inf{t > J; : X; = i}. Itis
immediate that

i is recurrent if and only if i is absorbing or P;(T; < 00) = 1.

We have the following analogies of the Chapter 1 criterion for
recurrence/transience

Theorem
If i is recurrent if and only if [[° Py(t)dt = oo

Proof:

By Fubini’'s Theorem fooo Pi(t)dt = Ei(D>" 50 Ive=iSkt1) =

> k>0 Ei(ly,=iSk+1)- But given (Yi)k>o the Sy are exponential random
variables of appropriate parameter. In particular if Y = i, then S;,1) is
an exponential g; random variable of expectation 1/g;, so independence
yields [ Pi(t)dt = qukzo P;(Yx = i) which is finite or infinite

i

according to whether / is transient or recurrent by Chapter 1.
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The h Skeleton

For a Markov chain (X;):>0, the discrete time process (Z,)n>0 = (Xun)n>0
is a Markov chain by the semigroup characterization of our Markov chain
X with transition matrix given by P;;(h) (Strictly speaking (when
explosions are possible, this Matrix is a sub probability matrix but if this
bothers you simply adjoin a value oo to /.

Theorem
for any h > 0 and i € I, i is recurrent for X if and only if i is recurrent for
Z.
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Proof:

If / is transient for X then IP; a.s. the times t for which X; = i/ form a
bounded set. This certainly implies that the n such that Z, = i form a
bounded (which is to say finite) set under P;. That is i is transient. If / is

recurrent for X then [ Pi( > om0 f("H = 00. But by
the semigroup property

Vvt € [nh, (n+ 1) Pi((n + 1)h) > Py(t)e 9 ((tDh=0 > p.(4)e=d'h

Thus h) oy P(Z, = i) > e 9" f,f:H)h P;(t)dt = co. Again, we
conclude by Chapter 1 that / is recurrent for Z.
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