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Recall
In this course we will restrict attention to the minimal Markov chains.
These will be what we consider to be continuous time Markov chains. The
following gives two equivalent ways of looking a these Markov chains.

Theorem
Given a general Q-matrix Q and the associated minimal semigroup
P(t)t≥0 the following are equivalent for a process (Xt)t≥0 that is cadlag
on I
a) Conditional upon X0 = i , the jump chain of X , (Yn)n≥0 is a discrete
time (δi ,Π) Markov chain (where Π is derived from Q in the usual way)
and conditional upon (Yn)n≥, the holding times (Sn)n≥1 are independent
Exp(qYn−1) random variables.
b) Given integer n ≥ 0 and times 0 ≤ t0 < t1 < · · · < tn+1 and
i0, i1 · · · in+1 ∈ I ,

P(Xtn+1 = in+1|Xt0 = i0,Xt1 = i1 · · ·Xtn = in) = Pinin+1(tn+1 − tn)

In this part we use a) rather than b) to analyze the chains.
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Class Structure
Definition

Given Q-matrix Q, we say i leads to j if

Pi(∃t ≥ 0 : Xt = j) > 0

We write i → j if this is the case.
Definition We say i and j communicate if i → j and j → i

Theorem
The following are equivalent to i → j for i and j distinct

(i) i → j for the jump chain (Yn)n≥0
(ii) ∃n > 0 and i = i0, i1 · · · in = j so that ∀1 ≤ j ≤ n, qij−1ij > 0

(iii) ∀t > 0,Pij(t) > 0
(iv) for some t > 0,Pij(t) > 0
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Proof

(i) is obviously equivalent to i → j given the jump chain representation.
Furthermore (i) is equivalent to the existence of integer n > 0 and distinct
i = i0, i1 · · · in = j so that ∀1 ≤ j ≤ n, πij−1ij > 0. But this is equivalent to
the exisitence of n and distinct i = i0, i1 · · · in = j so that
∀1 ≤ j ≤ n, qij−1i−j > 0, that is (ii). If (ii) holds with n and
i = i0, i1 · · · in = j , then for any t > 0

Pi(Xt = j) ≥ Pi(Yj = ij∀j ≤ n, Sj < t/n∀j < n, Sn > t) > 0.

It is immediate that (iii) implies (iv). But, again from the jump chain
representation, it is clear that (iv) implies (i)
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Given our definition for i and j communicating, we can easily see that this
relation partitions I into communicating classes, as in Chapter 1. We say
the chain is irreducible if there is a single communicating class (and it is
easily seen that this is the same as the jump chain being irreducible). We
similarly speak of closed classes and absorbing sites (i is absorbing if and
only if qi = 0).
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Hitting probabilities
Some questions for continuous time Markov chains can be rewritten as
questions fore the discrete time jump chain. An important example is
calculating Pi(DA <∞) for i ∈ I , A ⊂ I and DA = inf{t ≥ 0 : Xt ∈ A}.
The event DA <∞ is exactly the event that ∃n ≥ 0 : Yn ∈ A for Y the
discrete time jump chain for X .

So if we write hAi for Pi(DA <∞) which equals PY
i (TA <∞), we have

Theorem
The function hA is the smallest positive function satisfying
• hAi = 1 for i ∈ A;
• ∑

j qijh
A
j = 0 for i /∈ A;

Proof: We know that hAi is the smallest positive function satisfying hAi = 1
for i ∈ A and

∑
j πijh

A
j − hAi = 0 for i /∈ A. We note that for i not in A if

it is absorbing then hAi = 0 and
∑

j qijh
A
j = 0; if it is not then

qi(
∑

j πijh
A
j − hAi ) = 0 which is precisely

∑
j qijh

A
j = 0. The reverse holds

in the same way.



Basic Theory for Cts Time Chains.

Just as in chapter one, we have

Corollary
For A and B disjoint subsets of I . Let hA,Bi = Pi(DA < DB) The function
hA,B is the smallest positive function satisfying
• hA,Bi = 1 for i ∈ A;
• hA,Bi = 0 for i ∈ B;
• ∑

j qijh
A,B
j = 0 for i /∈ A ∪ B;
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Again, as in Chapter 1 we can consider function

kA
i = Ei(DA)

Theorem
Suppose that qi > 0 for each i ∈ I The function kA is the smallest
positive function satisfying
• kA

i = 0 for i ∈ A;
• ∑

j qijk
A
j = −1 for i /∈ A;

Remark: We need the hypothesis that qi > 0 as otherwise if i /∈ A, the
second equation cannot be true.
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Proof

Unlike the previous result which was just a reqriting of the corresponding
result for the jump chain, this statement requires a reworking of the proof
of the analagous result for discrte time processes. Again we use the jump
chain. We first show kA satisfies the claimed equations. Obviously kA

i = 0
on A so we suppose that i /∈ A. In this case we condition on the first jump
time S1 for the chain starting at i :

kA
i = Ei(E (DA|S1)) = Ei

(
S1 +

∑
j

πijk
A
j

)
=

1

qi
+
∑
j 6=i

πijk
A
i =

1

qi
(1 +

∑
j 6=i

qijk
A
j )

So multiplying both sides by qi = −qii we get −qiikA
i = 1 +

∑
j 6=i qijk

A
j

which is the desired equation for i not in A.
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Proof continued
It remains to prove minimality. Again we use the same argument as for
Chapter 1: we regenerate whenever possible. We need only consider i not
in A. Then for k̃A another positive solution to the above equations

k̃A
i =

1

qi
+
∑
j 6=i

πij k̃
A
j ) =

1

qi
+
∑
j /∈A

πij k̃
A
j )

=
1

qi
+
∑

j 6=i ,/∈A

πij(
1

qj
+
∑
l /∈A

πjl k̃
A
l )

We note that
∑

j 6=i πij(
1
qj

is Ei(S2IDA>S1). Continuing with our expansion

we have for each n, k̃A
i

=
1

qi
+ Ei(S2IDA>S1) + · · ·Ei(SnIDA>Sn−1) + positive term.

to finish we simply observe that as n tends to infinity
1
qi

+ Ei(S2IDA>S1) + · · ·Ei(SnIDA>Sn−1) converges to kA
i .
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Recurrance and Transience
Definitions:

Given Q a site i ∈ I is recurrent if

Pi({t : Xt = i} is unbounded) = 1

and is transient if

Pi({t : Xt = i} is unbounded) = 0.

It is immediately clear that i is recurrent for Q if and only if i is recurrent
for the jump chain with transition matrix Π. In fact we have

Theorem
(i) i is recurrent for (Xt)t≥0 if it is recurrent for (Yn)n≥0,
(ii) i is transient for (Xt)t≥0 if it is transient for (Yn)n≥0,

(iii) Each site is either transient or recurrent
(iv) Transience or Recurrence are class properties.

The theorem is immediate from our Jump chain representation. We will,
as before, speak of transient or recurrent chains if all sites i are so. In
particular we will speak of transient/recurrent chains if Q is irreducible.
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Expected time at i
Definition

Given Q Markov chain (Xt)t≥0 , we write Ti for inf{t ≥ J1 : Xt = i}. It is
immediate that

i is recurrent if and only if i is absorbing or Pi(Ti <∞) = 1.

We have the following analogies of the Chapter 1 criterion for
recurrence/transience

Theorem
If i is recurrent if and only if

∫∞
0

Pii(t)dt =∞

Proof:
By Fubini’s Theorem

∫∞
0

Pii(t)dt = Ei(
∑

k≥0 IYk=iSk+1) =∑
k≥0 Ei(IYk=iSk+1). But given (Yk)k≥0 the Sk are exponential random

variables of appropriate parameter. In particular if Yk = i , then Sk+1) is
an exponential qi random variable of expectation 1/qi , so independence
yields

∫∞
0

Pii(t)dt = 1
qi

∑
k≥0 Pi(Yk = i) which is finite or infinite

according to whether i is transient or recurrent by Chapter 1.
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The h Skeleton

For a Markov chain (Xt)t≥0, the discrete time process (Zn)n≥0 ≡ (Xnh)n≥0
is a Markov chain by the semigroup characterization of our Markov chain
X with transition matrix given by Pij(h) (Strictly speaking (when
explosions are possible, this Matrix is a sub probability matrix but if this
bothers you simply adjoin a value ∞ to I .

Theorem
for any h > 0 and i ∈ I , i is recurrent for X if and only if i is recurrent for
Z .
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Proof:
If i is transient for X then Pi a.s. the times t for which Xt = i form a
bounded set. This certainly implies that the n such that Zn = i form a
bounded (which is to say finite) set under Pi . That is i is transient. If i is

recurrent for X then
∫∞
0

Pii(t)dt =
∑

n≥0
∫ (n+1)h

nh
Pii(t)dt =∞. But by

the semigroup property

∀t ∈ [nh, (n + 1)h]Pii((n + 1)h) ≥ Pii(t)e−q
i ((n+1)h−t) ≥ Pii(t)e−q

ih

Thus h
∑

n≥1 P(Zn = i) ≥ e−qih
∫ (n+1)h

nh
Pii(t)dt =∞. Again, we

conclude by Chapter 1 that i is recurrent for Z .
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